High-temperature stable refractory nanoneedles with over 99% solar absorptance
نویسندگان
چکیده
منابع مشابه
HIGH TEMPERATURE ELASTIC PROPERTIES OF REFRACTORY MATERIALS
Abstract: A pulse-echo technique, based on ultrasonic "long-bar" mode (LBM) velocity measurements, working up to 1700°C is described. Magnetostrictive transducers and ultrasonic lines used in a 40-85 kHz frequency range are detailed. The conditions of choice of fundamental parameters (frequency, line geometry, sample size) are discussed in relation with the nature and the microstructure of ...
متن کاملUltra-refractory ceramics for high-temperature solar absorbers
It is well known that the efficiency of thermodynamic solar plants increases with the working temperature. At present the main limit in temperature upscaling is the absorber capability to withstand high temperatures. The ideal solar absorber works at high temperatures, has a low thermal emissivity and a high absorptivity in the solar spectral range . The paper reports on the high temperature em...
متن کاملSolvothermal Synthesis of Cobalt and Copper Sulfides Nanoparticles with High Light Absorptance for New Solar Selective Coatings
New selective coating materials are developed and used in advanced solar collector and absorber designs with improved efficiency. Cobalt and Copper sulfides nanoparticles are high interest for absorbers of solar thermal collectors due to their optical properties and high absorptance in the solar wavelength range (> 96%). In the present work, Cobalt and Copper sulfides nanoparticles were synthes...
متن کاملHigh Temperature Solar Concentrators
The use of solar energy in technical applications is often constrained due to its low energy density relative to the conventional sources of energy. Optical concentration is one option to increase the energy density of the solar radiation resulting in the possibility to use absorbers with small surfaces. Higher temperatures can be achieved under concentrated conditions, because heat losses are ...
متن کاملSnO2 nanowall-arrays coated with rutile-TiO2 nanoneedles for high performance dye-sensitized solar cells.
A novel architecture of SnO(2) nanowall-arrays coated with rutile-TiO(2) nanoneedles is fabricated for the first time and envisaged in dye-sensitized solar cells. Devices constructed using these architectures showed a power conversion efficiency of 4.12%, which is the highest among the SnO(2) nanostructures grown on conducting substrates by wet chemical methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: APL Materials
سال: 2019
ISSN: 2166-532X
DOI: 10.1063/1.5084086